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1 Introduction

The optimization of networks which connect a given set of nodes is of common interest
in many different areas, among them electrical engineering (e.g. for electronic platines),
telecommunication, or road construction and trade-logistics.

Usually, the optimization has to consider different demands, e.g.:

(i) to minimize the total costs of establishing the network, which should be proportional
to the total length of the links between the different nodes,

(ii) to minimize the time to reach any given node from any other node, which should
be proportional to the length of the links along the shortest path between the two
nodes.

Considering only the first demand, the solution is given by a network where every node is
connected to the net by just one (the possible shortest) link, which leads to the minimal
link system, also known as minimal spanning tree. Contrary, considering only the second
demand, the solution is given by a network where every node is connected to every other
node by a direct link, which leads to the direct link system (compare also Fig. 1).

Both optimized solutions have their disadvantages: in the first case, a minimized total
length of the network means a very long connection between arbitrary nodes, which in-
cludes large detours, since the connection on the existing network exceeds the metric
distance by far. Moreover, a minimal link system might be susceptible to breakdown,
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because every node has only one connection to the net. In the second case, the metric
distance is equal to the length of the link, leading to the shortest possible connection
between two points — however the total length of the network reaches a maximum.

For practical applications, both solutions could be sufficient under certain circumstances.
A minimal link system is appropriate e.g. if the connection distance can be passed with
a very high speed. Then the time to reach a given node does not count, and a detour
on the network could be easily accepted. On the other hand, a direct link system will be
appropriate if the costs of establishing a network do not count compared to the traveling
time which should be as short as possible.

Compared to these two idealized limiting cases, in most real applications a network has to
be established which minimizes the total length of the connections as well as the traveling
time. However, a minimized detour means a direct connection between all nodes and
therefore, a maximum total length of the network, and minimal costs for the network
mean the smallest possible total length for the links. Since both demands could not be
satisfied at the same time, we have to find a compromise between the two cases discussed
above.

Optimization problems like this are known as frustrated problems (EBELING et al., 1990,
1994). The frustrated optimization problem is characterized by a tremendous number
of nearly evenly matched solutions which have to be found in a very rugged landscape
of the related optimization function. In order to find some of these matched solutions,
evolutionary algorithms are applied (RECHENBERG, 1994, HOLLAND, 1975, SCHWE-
FEL, 1981, GOLDBERG, 1989, FOGEL, 1995). These algorithms are a special class of
stochastic search strategies in an ensemble of searchers which adapt certain features from
natural evolution. The examples discussed here, are the BOLTZMANN- and the DARWIN
strategy, as well as a mix of both of them (EBELING, ENGEL, 1986, EBELING, 1990,
BOSENIUK et al., 1987, 1991).

With respect to the optimization of networks, we investigate (i) the evolution of the
network and the related fitness function during the optimization process, (ii) different
optimized solutions (graphs of varying density) for the network in dependence on the
degree of frustration.

2 Evaluation of Networks

In order to optimize networks, we first have to define a potential function (or a fitness
function) which evaluates a given network.

Let us consider a set of nodes which shall be connected by straight lines representing the
links. The number of possible graphs ¢ to connect a given set of nodes p;...py is of the
order 2VWV-1/2 Each graph should be evaluated due to the following potential function:

Ulg) =1 —A)D(g) +AL(g); 0<A<1 (1)

Here, D(g) represents the mean detour to reach different nodes on the existing network,
whereas C'(¢g) represents the total costs for establishing the network, which are related to
the total length of the links.
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In order to minimize the potential U(g), both terms should be minimized. As discussed
above, this means a frustrated problem, since both demands cannot be totally satisfied at
the same time. The demand for a minimized detour between every two points represents
a local constraint to the network, whereas the demand of a minimized total length of the
network means a global constraint. For example, if we discuss the optimization of a road
network (SCHWEITZER et al., 1995), the local constraints represent the interest of the
users who don't like detours, and the global constrains are given by the interests of the
government which has to pay for the road construction and therefore tries to minimize it.

The parameter ) is introduced to weight between the two contradicting demands. The
case A — 0 leads to a potential function, which only minimizes the detour regardless of the
costs of the network, and finally results in the direct link system (Fig. 1a). In the opposite
case, A — 1, only the costs, which should be proportional to the length of the network
will be minimized, which finally leads to the minimal link system (Fig 1b). (We note, that
in the node system considered here, the minimal link system will be different from the
known STEINER tree (Fig.1c), since we assume that any link between nodes should be a
straight line and no additional sub-nodes should be constructed to connect given nodes.)
If A is different from 0 or 1, it should be a measure for the degree of frustration of the
problem.

(@) (b) (©)

Figure 1: (a) direct link system, (b) minimal link system, (¢) STEINER tree for a set of
four nodes

In this paper, the direct link system will be used as a reference state, indicated by the
symbol . In this case a direct connection between any two nodes exists. Then, the detour
D(g*) is zero and the total length of the network gets its maximum value L*:

roly e v - %2_: D(g) =0 2)

2,7=1

x;,y; are the coordinates of node 7 in a two-dimensional plane. For values of 0 < A < 1,
the mean detour D(g) is defined as follows:

=3 2 ©)

[\DI»—t

where [F; means the direct (metric) distance between the nodes i and j (eq. 2) and h; ;
is the length of the shortest route which connects nodes ¢ and j on the existing gmph
Obviously, h; ; = [} ; yields for a graph representing the direct link system.
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The expression D(g) can be normalized by the total length of the direct link system,
which is a known constant for a given set of nodes,

D(g) al hij — 17
g =9 _ L5 Pl g
i,7=1

In order to specify the term representing the costs, we assume the costs simply propor-
tional to the total length of the graph

DO | =

Clo) =5 X by 9

where [; ; is the length of the direct connection between nodes i and j, if there is any on
the existing graph.

After a normalization of C(g) similar to eq. (4), the potential function describing the
network reads finally

Ul 1 &
U(g) 2L* 2L* iﬁjZI( )\> (hl,] lz,j) + )\ ll] (6)

For the reference state (direct link system), the values are d(¢*) = dynin = 0 for the mean
detour, ¢(g*) = ¢mar = 1 for the costs, and u(g*) = A for the potential. Based on eq. (6),
a hypothetic network will be optimized with respect to the mean detour and the total
length of the network.

3 Boltzmann and Darwin Strategies

An optimization process can be described as a special search for minima of a related
potential in the configuration space. In the considered case, the configuration space is
defined by the number of all possible graphs ¢ to connect the given set of nodes p;...py,
and the potential is given by u(g) (eq. 6).

Let us consider a numbered set of states ¢ = 1,...,s in the configuration space, each
of them characterized by a scalar U; (the potential energy). Further, we assume a total
number of N searchers participating in the search for potential minima. Then, N;(t) gives
the actual number of searchers occupying the state 7 at time £. This occupation number
should be an integer, but in the limit N — oo the occupation fraction N;(¢)/N may be
replaced by a probability of occupation at time ¢ denoted by p;(¢).

The optimization process has to ensure that the occupation probability for the minima of
the potential will increase during the search. However, since due to the frustration of the
problem a large quantity of suitable minima exist, the search strategy should also avoid
a total locking of the searchers in the minima found so far in order to guarantee further
search.



- o A e e e GRRe. L TR AE S M VA s A AL WA S Y A VAR ) M YRRV e AT ~

There are different optimization routines, like the METROPOLIS algorithm (METROPOLIS
et al., 1953) or the simulated annealing approach (ANDRESEN, 1989, NULTON, SALA-
MON, 1988) which fulfill these criteria. A dynamics which finds the minimum among the
set of scalars (the minimum potential energy) is given by

dpéit) = ZAij pi(t) — Ajipi(t) (7)
i#]

A;; denotes the transition probability for the searcher to move from state i to state j and
is defined as follows:

o 1 if U; < Uj

This means that transitions towards a deeper minimum in U are always accepted, but
transitions which lead to a deterioration are accepted only with a probability related to
the difference in the potential. Thus, due to the motion along the gradients the steepest
local descent of the potential will be reached; however, due to thermal fluctuations locking
in those local minima will be avoided.

The prefactor A?j is symmetrical (A?j = Agi), it defines a set of possible states j which
can be reached from state i. The simplest definition might be
40— 1 %f Z %s adjace@; to g . (9)

4 0 if ¢ 1is not adjacent to j

The term adjacent means here that state j results only from a single elementary mutation
of state 7, in other words, a change between the different states can only occur in small
steps.

Similar to simulated annealing, the temperature T(¢) decreases during the search by a
certain rule, e.g. by a power law. This decrease leads to the consequence that first the
larger basins of the potential minima are explored (”coarse grained search”) and later on
a "fine grained” search occurs within these minimum regions.

For constant temperatures, the stationary solution of eq. 7, p? = lim, .., p;(), is known
to be the canonical or BOLTZMANN distribution

pi ~ exp (=Uy/T) (10)

therefore we call this optimization strategy BOLTZMANN strategy. It has occured during
the cosmic evolution to optimize certain thermodynamic functions. Since the minimum of
the potential has the hightest probability, the BOLTZMANN process asymptotically finds
the minimum in a given set of scalars U;. One can show (FEISTEL, EBELING, 1989), that
during the search process the function

K1) = X pi(r)log ™ = = (11)
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is monotonically decreasing. Here F'(t) has the meaning of a free energy of the system
with the equilibrium value Fy.

During biological evolution, some new elements occured in the evolutionary optimization
process, namely (i) mutation processes due to error reproduction, and (ii) self-reproduction
of species with a fitness above the average fitness, which increases its precision in the
course of evolution. We adapt these elements for our search strategy, which is then called
DARWIN strategy because it includes some biological elements known from population
dynamics (EBELING, FEISTEL, 1982, EBELING et al., 1990, 1994, BOSENIUK et al.,
1987, 1991).

Let us consider again the population of N searchers, which are now distributed in different
subpopulations x; = N;/N; (i = 1,...,N), each characterized by a replication rate FE;
which might be proportional to the fitness. Then the average replication rate (E) is given
by

(E) = %Z Ea(t), N=Ya(t) (12)

i=1

Due to the EIGEN — FISCHER dynamics, the evolution of the subpopulations is given by
the equation:

d.’ﬁi
dt

= (B —(B)) wi+ ) _[A} x; — AJ ] (13)
J#1

Here the transition rates A;; are assumed to be symmetric, since there are no directed
mutations. The effect of an increasing precision in self-reproduction can be considered
again by a temperature dependence of the transition rates, where a decreasing temperature
leads to a smaller probability of mutation. For A?j — 0, this evolutionary dynamics is
known to approach asymptotically a final state where the average fitness (E) is equal
to the maximal fitness, which means that only the (one) subpopulation with the best
fitness value will survive. For finite mutation rates, AY; > 0, the target of the search is the
eigenvector of eq. (13) corresponding to the highest eigenvalue, which for small mutations
rates is close to the maximal value E,,,,.

To compare both strategies (EBELING, ENGEL, 1986, BOSENIUK, EBELING, 1991) we
note that the BOLTZMANN strategy is able to detect the appropiate potential minima even
in a unknown, rugged landscape as long as the potential barriers between local minima
are not too high, which forces the locking in side minima. On the other hand, the DARWIN
strategy is able to cross high barriers by tunneling if the next minimum is close enough.

In order to combine the advantages of both stragegies, a mized BOLTZMANN DARWIN
strategy has been introduced (EBELING, ENGEL, 1986) Here, the asymmmetric transition
probabilities (eq. 8) are adopted which favor the transition towards the minimum. On the
other hand, the fitness E; of the subspecies 7 is chosen to be the negative of the potential
U, indicating that the subspecies which has found the better minimum in the potential
landscape, also has the higher reprodution rate. Due to the comparison with the mean
value (U), there exist a global coupling between the different subpopulations.

It has been shown recently (BOSENIUK, EBELING, 1991, ASSELMEYER, EBELING, 1996)
that a mized BOLTZMANN DARWIN strategy will be more successful in solving frustrated
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problems than both of the strategies. The basic equation for the mixed strategy which is
appropriate to solve the optimization problem of minimizing U; reads

dt

=rk((U) —U;)x; + g[AU x; — Ajia] (14)

with the transition matrices A;; obtained from eq. (8). By changing the parameters x and
T in the range

0<k<1, 0<T<c (15)

we may interpolate between the two limit cases

k=0, T >0 DBOLTZMANN strategy
k=1, T — oo DARWIN strategy

In the discussions above, the discrete numbers of searchers, N;(¢), have been replaced
by occupation probabilities p;(t) or population densities x;(¢). We note that for small
numbers N; the stochastic search process could be also reformulated in terms of a master
equation (FEISTEL, EBELING, 1989; SCHWEITZER et al., 1995).

4 Results of Computer Simulations

In order to show the evolution of the network during the optimization process (Fig. 2),
we start the computer simulations with an initial graph of 39 nodes close to a direct link
system (A =0.975). For the initial state, the mean detour is d(¢*) = 0, the cost value
is ¢(¢g*) = 1, and the potential value is u(¢g*) = A. During every time step, the graph is
first mutated by adding or removing one link between points and then evaluated. For the
optimization, in Fig. 2 the BOLTZMANN strategy is used.

The optimization process occurs in two stages (Fig. 3). Starting with a direct link system,
during the first stage the network is strictly thined out. However, as Fig. 3a shows, this
does not mean a considerable decrease in the potential, unless a remarkable increase of
the mean detour is reached, related to a decrease of the costs. During the second stage,
the links between the different nodes are balanced with respect to the costs and the mean
detour, resulting in a slowly decrease of both detour and costs. In Fig. 3b, the transition
between both stages is marked by the maximum region of the curve.

Fig. 4 presents results for the optimized network in dependence on the frustration para-
meter \, which influences the final density of the graph as discussed above.

In Fig. 5 the potential values for the optimized network, u°"*, obtained asymptotically

are plotted vs. the frustration parameter \. Surprisingly, the potential minimum in the
asymptotic regime is a 4th order power function of A:

u’'(A) = A{—0.0075)\* + 0.0144\* — 0.0111)\ + 0.0046} (16)
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Figure 2: Optimization of a network of 39 nodes (A = 0.975) The graph is shown after

different time steps. The thickness of the lines indicates how much a given link is used for
the shortest possible connection of any node to any other.
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Figure 3: (a) Time dependence of the potenital and the mean detour, (b) mean detour
versus costs during the optimization of the network. With respect to the time, the left
curve starts in the lower right corner and ends in the lower left corner (A = 0.975).

which is also drawn in Fig. 5. This indicates a fixed relation between the asymptotic
values of d(g) and c(g) which allows a prediction of the best possible cost and the best
affordable detour of the network in dependence on \.

Finally, we would like to compare the results of the BOLTZMANN strategy and the mixed
strategy which also includes DARWINian elements. As shown in the simulations above, the
BOLTZMANN strategy finds suitable results in the asymptotic limit (about 60.000 simu-
lation steps). However, the mixed BOLTZMANN-DARWIN strategy already finds optimal
graphs in a much shorter simulation time, as shown in Fig. 6 for 10.000 simulation steps
(obtained for the same number of searchers in both simulations). The optimization func-
tion relaxes very fast compared to the BOLTZMANN curve. With respect to the networks
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Figure 4: Optimized networks after t=60000 simulation steps for different values of A:

(a)A = 0.900, (b)A = 0.975, (c)A = 0.990
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Figure 5: Dependence of the asymptotic potential minimum on the frustration parameter
A. Dots mark the results of optimization simulations, the dashed line is given by eq. (16)

obtained after 10.000 time steps, we find already balanced graphs with the mixed opti-
mization strategy, whereas the graphs obtained from the BOLTZMANN strategy clearly

display failures in optimization.

5 Conclusions

In order to summarize the results presented we want to conclude:

(i) network optimization which has to consider both the connection distance (detour)
between different nodes and the total length (costs) of the network, belongs to the
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Figure 6: Comparison of BOLTZMANN and mixed strategies for network optimization.
(left) A = 0.6 (right) A = 0.8 The networks presented are obtained after 10.000 simulation
steps, the related potential is displayed below. The ensemble consists of 16 searchers for
both strategies.

class of frustrated optimization problems, where numerous evenly matched solutions
exist

(ii) evolutionary optimization strategies which include both thermodynamic and biolo-
gical elements (mixed strategies of simulated annealing, ensemble search, mutation,
selection and recombination) provide a suitable tool for finding optimized solutions
in relatively short time (preferable in comparison to BOLTZMANN like strategies)

(iii) the optimization of networks occurs in two different time scales: (a) thin-out of the
network (short time scale), (b) balancing of detour compared to costs (long time
scale)

(iv) in the asymptotic limit the potential (fitness) of the optimized network can be
described by a power function, which defines a fixed relation between the mean
connection distance (detour) and the total lenght (costs) of the network
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