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1 IntroductionThe optimization of networks which connect a given set of nodes is of common interestin many di�erent areas, among them electrical engineering (e.g. for electronic platines),telecommunication, or road construction and trade-logistics.Usually, the optimization has to consider di�erent demands, e.g.:(i) to minimize the total costs of establishing the network, which should be proportionalto the total length of the links between the di�erent nodes,(ii) to minimize the time to reach any given node from any other node, which shouldbe proportional to the length of the links along the shortest path between the twonodes.Considering only the �rst demand, the solution is given by a network where every node isconnected to the net by just one (the possible shortest) link, which leads to the minimallink system, also known as minimal spanning tree. Contrary, considering only the seconddemand, the solution is given by a network where every node is connected to every othernode by a direct link, which leads to the direct link system (compare also Fig. 1).Both optimized solutions have their disadvantages: in the �rst case, a minimized totallength of the network means a very long connection between arbitrary nodes, which in-cludes large detours, since the connection on the existing network exceeds the metricdistance by far. Moreover, a minimal link system might be susceptible to breakdown,



F. Schweitzer et al.: Network Optimization Using Evolutionary Strategies 2because every node has only one connection to the net. In the second case, the metricdistance is equal to the length of the link, leading to the shortest possible connectionbetween two points { however the total length of the network reaches a maximum.For practical applications, both solutions could be su�cient under certain circumstances.A minimal link system is appropriate e.g. if the connection distance can be passed witha very high speed. Then the time to reach a given node does not count, and a detouron the network could be easily accepted. On the other hand, a direct link system will beappropriate if the costs of establishing a network do not count compared to the travelingtime which should be as short as possible.Compared to these two idealized limiting cases, in most real applications a network has tobe established which minimizes the total length of the connections as well as the travelingtime. However, a minimized detour means a direct connection between all nodes andtherefore, a maximum total length of the network, and minimal costs for the networkmean the smallest possible total length for the links. Since both demands could not besatis�ed at the same time, we have to �nd a compromise between the two cases discussedabove.Optimization problems like this are known as frustrated problems (Ebeling et al., 1990,1994). The frustrated optimization problem is characterized by a tremendous numberof nearly evenly matched solutions which have to be found in a very rugged landscapeof the related optimization function. In order to �nd some of these matched solutions,evolutionary algorithms are applied (Rechenberg, 1994, Holland, 1975, Schwe-fel, 1981, Goldberg, 1989, Fogel, 1995). These algorithms are a special class ofstochastic search strategies in an ensemble of searchers which adapt certain features fromnatural evolution. The examples discussed here, are the Boltzmann- and the Darwinstrategy, as well as a mix of both of them (Ebeling, Engel, 1986, Ebeling, 1990,Boseniuk et al., 1987, 1991).With respect to the optimization of networks, we investigate (i) the evolution of thenetwork and the related �tness function during the optimization process, (ii) di�erentoptimized solutions (graphs of varying density) for the network in dependence on thedegree of frustration.2 Evaluation of NetworksIn order to optimize networks, we �rst have to de�ne a potential function (or a �tnessfunction) which evaluates a given network.Let us consider a set of nodes which shall be connected by straight lines representing thelinks. The number of possible graphs g to connect a given set of nodes p1:::pN is of theorder 2N(N�1)=2. Each graph should be evaluated due to the following potential function:U(g) = (1� �)D(g) + �L(g) ; 0 � � � 1 (1)Here, D(g) represents the mean detour to reach di�erent nodes on the existing network,whereas C(g) represents the total costs for establishing the network, which are related tothe total length of the links.



F. Schweitzer et al.: Network Optimization Using Evolutionary Strategies 3In order to minimize the potential U(g), both terms should be minimized. As discussedabove, this means a frustrated problem, since both demands cannot be totally satis�ed atthe same time. The demand for a minimized detour between every two points representsa local constraint to the network, whereas the demand of a minimized total length of thenetwork means a global constraint. For example, if we discuss the optimization of a roadnetwork (Schweitzer et al., 1995), the local constraints represent the interest of theusers who don't like detours, and the global constrains are given by the interests of thegovernment which has to pay for the road construction and therefore tries to minimize it.The parameter � is introduced to weight between the two contradicting demands. Thecase �! 0 leads to a potential function, which only minimizes the detour regardless of thecosts of the network, and �nally results in the direct link system (Fig. 1a). In the oppositecase, � ! 1, only the costs, which should be proportional to the length of the networkwill be minimized, which �nally leads to the minimal link system (Fig 1b). (We note, thatin the node system considered here, the minimal link system will be di�erent from theknown Steiner tree (Fig.1c), since we assume that any link between nodes should be astraight line and no additional sub-nodes should be constructed to connect given nodes.)If � is di�erent from 0 or 1, it should be a measure for the degree of frustration of theproblem.
(b) (c)(a)Figure 1: (a) direct link system, (b) minimal link system, (c) Steiner tree for a set offour nodesIn this paper, the direct link system will be used as a reference state, indicated by thesymbol ?. In this case a direct connection between any two nodes exists. Then, the detourD(g?) is zero and the total length of the network gets its maximum value L?:L? = 12 NXi;j=1q(xi � xj)2 + (yi � yj)2 = 12 NXi;j=1 l?i;j ; D(g?) = 0 (2)xi; yi are the coordinates of node i in a two-dimensional plane. For values of 0 � � � 1,the mean detour D(g) is de�ned as follows:D(g) = 12 NXi;j=1hi;j � l?i;j (3)where l?i;j means the direct (metric) distance between the nodes i and j (eq. 2) and hi;jis the length of the shortest route which connects nodes i and j on the existing graph.Obviously, hi;j = l?i;j yields for a graph representing the direct link system.



F. Schweitzer et al.: Network Optimization Using Evolutionary Strategies 4The expression D(g) can be normalized by the total length of the direct link system,which is a known constant for a given set of nodes,d(g) = D(g)L? = 12 NXi;j=1 hi;j � l?i;jL? (4)In order to specify the term representing the costs, we assume the costs simply propor-tional to the total length of the graphC(g) = 12 NXi;j=1 li;j (5)where li;j is the length of the direct connection between nodes i and j, if there is any onthe existing graph.After a normalization of C(g) similar to eq. (4), the potential function describing thenetwork reads �nallyu(g) = U(g)2L? = 12L? NXi;j=1(1� �) (hi;j � l?i;j) + � lij (6)For the reference state (direct link system), the values are d(g?) = dmin = 0 for the meandetour, c(g?) = cmax = 1 for the costs, and u(g?) = � for the potential. Based on eq. (6),a hypothetic network will be optimized with respect to the mean detour and the totallength of the network.3 Boltzmann and Darwin StrategiesAn optimization process can be described as a special search for minima of a relatedpotential in the con�guration space. In the considered case, the con�guration space isde�ned by the number of all possible graphs g to connect the given set of nodes p1:::pN ,and the potential is given by u(g) (eq. 6).Let us consider a numbered set of states i = 1; :::; s in the con�guration space, eachof them characterized by a scalar Ui (the potential energy). Further, we assume a totalnumber of N searchers participating in the search for potential minima. Then, Ni(t) givesthe actual number of searchers occupying the state i at time t. This occupation numbershould be an integer, but in the limit N ! 1 the occupation fraction Ni(t)=N may bereplaced by a probability of occupation at time t denoted by pi(t).The optimization process has to ensure that the occupation probability for the minima ofthe potential will increase during the search. However, since due to the frustration of theproblem a large quantity of suitable minima exist, the search strategy should also avoida total locking of the searchers in the minima found so far in order to guarantee furthersearch.



F. Schweitzer et al.: Network Optimization Using Evolutionary Strategies 5There are di�erent optimization routines, like theMetropolis algorithm (Metropoliset al., 1953) or the simulated annealing approach (Andresen, 1989, Nulton, Sala-mon, 1988) which ful�ll these criteria. A dynamics which �nds the minimum among theset of scalars (the minimum potential energy) is given bydpi(t)dt =Xi6=j Aij pj(t)� Aji pi(t) (7)Aij denotes the transition probability for the searcher to move from state i to state j andis de�ned as follows:Aij = A0ij � ( 1 if Ui < Ujexp (�(Ui � Uj)=T (t)) if Ui � Uj (8)This means that transitions towards a deeper minimum in U are always accepted, buttransitions which lead to a deterioration are accepted only with a probability related tothe di�erence in the potential. Thus, due to the motion along the gradients the steepestlocal descent of the potential will be reached; however, due to thermal uctuations lockingin those local minima will be avoided.The prefactor A0ij is symmetrical (A0ij = A0ji), it de�nes a set of possible states j whichcan be reached from state i. The simplest de�nition might beA0ij = ( 1 if i is adjacent to j0 if i is not adjacent to j (9)The term adjacent means here that state j results only from a single elementary mutationof state i, in other words, a change between the di�erent states can only occur in smallsteps.Similar to simulated annealing, the temperature T (t) decreases during the search by acertain rule, e.g. by a power law. This decrease leads to the consequence that �rst thelarger basins of the potential minima are explored ("coarse grained search") and later ona "�ne grained" search occurs within these minimum regions.For constant temperatures, the stationary solution of eq. 7, p0i = limt!1 pi(t), is knownto be the canonical or Boltzmann distributionp0i � exp (�Ui=T ) (10)therefore we call this optimization strategy Boltzmann strategy. It has occured duringthe cosmic evolution to optimize certain thermodynamic functions. Since the minimum ofthe potential has the hightest probability, the Boltzmann process asymptotically �ndsthe minimum in a given set of scalars Ui. One can show (Feistel, Ebeling, 1989), thatduring the search process the functionK(t) =Xi pi(t) log pi(t)p0i = F (t)� F0T (11)



F. Schweitzer et al.: Network Optimization Using Evolutionary Strategies 6is monotonically decreasing. Here F (t) has the meaning of a free energy of the systemwith the equilibrium value F0.During biological evolution, some new elements occured in the evolutionary optimizationprocess, namely (i) mutation processes due to error reproduction, and (ii) self-reproductionof species with a �tness above the average �tness, which increases its precision in thecourse of evolution. We adapt these elements for our search strategy, which is then calledDarwin strategy because it includes some biological elements known from populationdynamics (Ebeling, Feistel, 1982, Ebeling et al., 1990, 1994, Boseniuk et al.,1987, 1991).Let us consider again the population of N searchers, which are now distributed in di�erentsubpopulations xi = Ni=N ; (i = 1; :::; N), each characterized by a replication rate Eiwhich might be proportional to the �tness. Then the average replication rate hEi is givenby hEi = 1N NXi=1Eixi(t); N = NXi=1 xi(t) (12)Due to the Eigen { Fischer dynamics, the evolution of the subpopulations is given bythe equation: dxidt = (Ei � hEi) xi +Xj 6=i[A0ij xj � A0ji xi] (13)Here the transition rates Aij are assumed to be symmetric, since there are no directedmutations. The e�ect of an increasing precision in self-reproduction can be consideredagain by a temperature dependence of the transition rates, where a decreasing temperatureleads to a smaller probability of mutation. For A0ij ! 0, this evolutionary dynamics isknown to approach asymptotically a �nal state where the average �tness hEi is equalto the maximal �tness, which means that only the (one) subpopulation with the best�tness value will survive. For �nite mutation rates, A0ij > 0, the target of the search is theeigenvector of eq. (13) corresponding to the highest eigenvalue, which for small mutationsrates is close to the maximal value Emax.To compare both strategies (Ebeling, Engel, 1986, Boseniuk, Ebeling, 1991) wenote that the Boltzmann strategy is able to detect the appropiate potential minima evenin a unknown, rugged landscape as long as the potential barriers between local minimaare not too high, which forces the locking in side minima. On the other hand, the Darwinstrategy is able to cross high barriers by tunneling if the next minimum is close enough.In order to combine the advantages of both stragegies, a mixed Boltzmann{Darwinstrategy has been introduced (Ebeling, Engel, 1986) Here, the asymmmetric transitionprobabilities (eq. 8) are adopted which favor the transition towards the minimum. On theother hand, the �tness Ei of the subspecies i is chosen to be the negative of the potentialUi indicating that the subspecies which has found the better minimum in the potentiallandscape, also has the higher reprodution rate. Due to the comparison with the meanvalue hUi, there exist a global coupling between the di�erent subpopulations.It has been shown recently (Boseniuk, Ebeling, 1991, Asselmeyer, Ebeling, 1996)that a mixed Boltzmann{Darwin strategy will be more successful in solving frustrated



F. Schweitzer et al.: Network Optimization Using Evolutionary Strategies 7problems than both of the strategies. The basic equation for the mixed strategy which isappropriate to solve the optimization problem of minimizing Ui readsdxidt = �(hUi � Ui) xi +Xj 6=i[Aij xj � Aji xi] (14)with the transition matrices Aij obtained from eq. (8). By changing the parameters � andT in the range 0 � � � 1; 0 < T � 1 (15)we may interpolate between the two limit cases� = 0; T > 0 Boltzmann strategy� = 1; T !1 Darwin strategyIn the discussions above, the discrete numbers of searchers, Ni(t), have been replacedby occupation probabilities pi(t) or population densities xi(t). We note that for smallnumbers Ni the stochastic search process could be also reformulated in terms of a masterequation (Feistel, Ebeling, 1989; Schweitzer et al., 1995).4 Results of Computer SimulationsIn order to show the evolution of the network during the optimization process (Fig. 2),we start the computer simulations with an initial graph of 39 nodes close to a direct linksystem (� =0.975). For the initial state, the mean detour is d(g?) = 0, the cost valueis c(g?) = 1, and the potential value is u(g?) = �. During every time step, the graph is�rst mutated by adding or removing one link between points and then evaluated. For theoptimization, in Fig. 2 the Boltzmann strategy is used.The optimization process occurs in two stages (Fig. 3). Starting with a direct link system,during the �rst stage the network is strictly thined out. However, as Fig. 3a shows, thisdoes not mean a considerable decrease in the potential, unless a remarkable increase ofthe mean detour is reached, related to a decrease of the costs. During the second stage,the links between the di�erent nodes are balanced with respect to the costs and the meandetour, resulting in a slowly decrease of both detour and costs. In Fig. 3b, the transitionbetween both stages is marked by the maximum region of the curve.Fig. 4 presents results for the optimized network in dependence on the frustration para-meter �, which inuences the �nal density of the graph as discussed above.In Fig. 5 the potential values for the optimized network, uopt, obtained asymptoticallyare plotted vs. the frustration parameter �. Surprisingly, the potential minimum in theasymptotic regime is a 4th order power function of �:uopt(�) = �f�0:0075�3 + 0:0144�2 � 0:0111�+ 0:0046g (16)
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t=0 t=20000 t=40000 t=60000Figure 2: Optimization of a network of 39 nodes (� = 0:975) The graph is shown afterdi�erent time steps. The thickness of the lines indicates how much a given link is used forthe shortest possible connection of any node to any other.
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Figure 3: (a) Time dependence of the potenital and the mean detour, (b) mean detourversus costs during the optimization of the network. With respect to the time, the leftcurve starts in the lower right corner and ends in the lower left corner (� = 0:975).which is also drawn in Fig. 5. This indicates a �xed relation between the asymptoticvalues of d(g) and c(g) which allows a prediction of the best possible cost and the besta�ordable detour of the network in dependence on �.Finally, we would like to compare the results of the Boltzmann strategy and the mixedstrategy which also includes Darwinian elements. As shown in the simulations above, theBoltzmann strategy �nds suitable results in the asymptotic limit (about 60.000 simu-lation steps). However, the mixed Boltzmann-Darwin strategy already �nds optimalgraphs in a much shorter simulation time, as shown in Fig. 6 for 10.000 simulation steps(obtained for the same number of searchers in both simulations). The optimization func-tion relaxes very fast compared to the Boltzmann curve. With respect to the networks
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(a) (b) (c)Figure 4: Optimized networks after t=60000 simulation steps for di�erent values of �:(a)� = 0:900, (b)� = 0:975, (c)� = 0:990
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Figure 5: Dependence of the asymptotic potential minimum on the frustration parameter�. Dots mark the results of optimization simulations, the dashed line is given by eq. (16)obtained after 10.000 time steps, we �nd already balanced graphs with the mixed opti-mization strategy, whereas the graphs obtained from the Boltzmann strategy clearlydisplay failures in optimization.5 ConclusionsIn order to summarize the results presented we want to conclude:(i) network optimization which has to consider both the connection distance (detour)between di�erent nodes and the total length (costs) of the network, belongs to the
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Boltzmann λ = 0.6 t = 10000 Mixed λ = 0.6 t = 10000 Boltzmann λ = 0.8 t = 10000 Mixed λ = 0.8 t = 10000
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Figure 6: Comparison of Boltzmann and mixed strategies for network optimization.(left) � = 0:6 (right) � = 0:8 The networks presented are obtained after 10.000 simulationsteps, the related potential is displayed below. The ensemble consists of 16 searchers forboth strategies.class of frustrated optimization problems, where numerous evenly matched solutionsexist(ii) evolutionary optimization strategies which include both thermodynamic and biolo-gical elements (mixed strategies of simulated annealing, ensemble search, mutation,selection and recombination) provide a suitable tool for �nding optimized solutionsin relatively short time (preferable in comparison to Boltzmann{like strategies)(iii) the optimization of networks occurs in two di�erent time scales: (a) thin-out of thenetwork (short time scale), (b) balancing of detour compared to costs (long timescale)(iv) in the asymptotic limit the potential (�tness) of the optimized network can bedescribed by a power function, which de�nes a �xed relation between the meanconnection distance (detour) and the total lenght (costs) of the network
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